WATER FRAMEWORK DIRECTIVE

Groundwater Monitoring Requirements

Rob Ward

National Groundwater & Contaminated Land Centre Environment Agency

OVERARCHING OBJECTIVES

- Coherent and comprehensive overview of water status in each River Basin District
- For Groundwater, programmes shall cover both monitoring and assessment of chemical and quantitative status
- Monitoring programmes shall be operational by Dec 2006
- Monitoring will be in accordance with Annex V

Quantitative Status

- Status refers to level as the key parameter
- Water levels to be used to demonstrate that available groundwater resource is not exceeded by long-term annual average rate of abstraction
- Reliable Assessment for all bodies (or groups) including assessment of available resource
- Network and monitoring to support this however can't achieve it on its own. It is only one of the parameters that is required

Water Level Monitoring

Chemical Status

- Parameters: Conductivity and Pollutants
- Concentrations of pollutants:
 - do not exhibit effects of intrusions
 - do not exceed quality standards
 - will not result in failure to achieve Art. 4 objectives for surface waters, diminution of ecological or chemical quality or in significant damage to terrestrial ecosystems.
- Additional criterion for quality is that of anthropogenically induced trend assessment
- Network(s) need to be capable of determining status and trends: two types of monitoring identified - Operational and Surveillance

Surveillance Monitoring

- To supplement RA (characterisation etc)
- Data for trend assessment (natural and anthropogenic)
- Parameters: Core set plus indicative pollutants from risk assessment
- Inform additional (Operational) monitoring requirement

Operational Monitoring

- Only in groundwater bodies (or groups) identified as being "at risk" following impact assessment and surveillance monitoring
- To establish chemical status of all "at risk" bodies
- To establish presence of any long term anthropogenically induced trends in pollutant concentrations
- Network to provide data representative of whole body (or group)
- Frequency: sufficient to detect impacts but at least once per year

Pollutant Trends

- Data from both surveillance and operational monitoring to be used
- Objective: to identify any long term anthropogenically induced upward trends and their reversal
- Trends calculations shall be done for the body as a whole (or group)
- Statistical significance and confidence must also be determined

Interpretation of Status

- Chemical status for a groundwater body will be determined by aggregating data for the body as a whole
- Where standards have been set (or are relevant), the mean value of the results will be used to demonstrate compliance
- Results of both quantitive and chemical status along with pollutant trends are to be presented on a colour-coded map

Current situation

- In England and Wales: Quantitative monitoring reasonably well established and a strategy for quality monitoring being implemented
- In Scotland: limited monitoring currently undertaken but a strategy being developed
- Main areas of concern are the poorly permeable aquifers that will be defined as groundwater bodies but have very little monitoring
- Resource Assessment and Management (RAM) Framework and CAMS process will support quantitative aspects

Other WFD groundwater monitoring requirements

• For "at risk" bodies....where relevant.....

- Location of abstractions (>10 m³/day or serving >50 people) and annual average abstraction rates
- Chemical composition of water abstracted from body
- Discharges to groundwater bodies location, rate and composition
- Land use

Supporting Initiatives

- Europe: Common Implementation Strategy
 - Work Packages to support implementation
 - Monitoring: guidance on requirements
 - Data aggregation and trend assessment
- Environment Agency Groundwater Monitoring Strategy
 - Framework for Quality Monitoring
 - Guidance on network design
 - Risk-based monitoring

Quality monitoring strategy

- Development of a strategic framework for monitoring:
 - Strategic Drivers and Objectives
 - Water Framework and Daughter Directives
 - Strategy planning and prioritisation of needs
 - Business Planning
 - National/Regional needs and priorities
 - Implementation
 - Conceptual model development/network design
 - Monitoring, interpretation and reporting

Network Design Matrix

Priority Level	Principal Purpose/Criteria			
	111 CANA SA			
1 a	Recharge (Unconfined)			
/	Discharge			
1b	Confined Aquifer			
2	Land Use – Arable			
	Land Use - Urban			
	Land Use - Grassland			
	Land Use – Semi-natural vegetation			
	Land Use - Forestry			
3	Land Use – Arable (deep/shallow)			
4	Land Use – Urban sub-division			
	(industrial/residential)			
5	3-D monitoring			
3 - 5	Local/Other criteria – specific			
	Pressures/Impacts © Environment Agency 2003			

Determinand and Frequency Selection

Sampling Frequency

	/	(C	Hydrochemical Determinand		
			Unresponsive	Responsive	
Hydrogeology 		Outcrop	3 years	6 monthly	
	SLUW	Confined	6 years	Annual	
	FAST	Outcrop	Annual	Quarterly	
		Confined	3 years	6 monthly	
			Surveillance	Operational	

Guidance on Monitoring

- CIS Project will produce guidance on monitoring for each water body category
- The guidance will contain detailed technical information on requirements for:
 - monitoring each quality element
 - representative site selection
 - frequency and density to achieve adequate confidence
 - statistical testing
- Will draw on Member States experience and develop a "tool kit"

Data Aggregation and Trend Assessment

Minimum number of sites, Network Criterion, Treatment of LOQ values

Data Aggregation

Regularisation Spatial aggregation arithmetic mean and CL weighted arithmetic mean and CL optional Kriging mean and CL

Trend Assessment

Regularisation Spatial aggregation Trend assessment Starting point Min. length of time series Max. length of time series Frequency of trend testing

Trend Reversal Assessment

Starting point Min. length of time series Max. length of time series

- Project focused on the development of particular algorithms for:
 - the identification of trends in pollutants (Annex V 2.4.4)
 - data aggregation method for chemical status assessment (Annex V 2.4.5)
 © Environment Agency 2002

SUMMARY

- Specific monitoring requirements to support WFD
- Risk-based approach proposed
- Monitoring needs to be consistent with other needs - statutory and environmental
- Need to continue to contribute to EU developments
- Partnership approach needed to deliver effective monitoring and benefits